
2025-03-21

R package binaries for Linux - Community Edition

Dr. Patrick Schratz
 

 

devXY GmbH

Signatories
Josiah Perry (Infrastructure Steering Committee member) has acknowledged the project idea and
even donated for it.

Sharing the project in the rstats subreddit resulted in some very positive reactions. (As my social
media accounts are not having the greatest reach and Twitter/X is basically dead, the reactions there
were limited.)

A blog post on devXY’s website has also been shared in rweekly in December 2024.
A variety of business clients of mine have shared their enthuisiams with me personally, hoping to

see a positive development of the overall project idea.

Project team
Patrick Schratz, CEO devXY.

Over a decade of experience with R, combined with a PhD in applied machine learning and a
background in DevOps engineering. Specialized in designing and deploying R-centric data science
environments for enterprise teams. Brings strong expertise in cloud infrastructure, UNIX system
administration, and optimizing R for high-performance use cases.

Contributors
None right now.

The Problem
Linux binary packages
Binary Packages are essential for efficient workflows in R. Currently, CRAN is building and pub-
lishing binary packages for Windows and macOS. Linux binaries are missing, even though most

1

https://orcid.org/0000-0003-0748-6624
https://www.reddit.com/r/rstats/comments/1iq7isu/package_binaries_for_arm64_and_alpine/
https://www.devxy.io/blog/cran-r-package-binaries-launch/


(corporate) team environments run on Linux. In addition, the share of private R users using Linux
as their host OS becomes larger every year.

Without binaries for Linux, package installations can take many minutes, sometimes even up
to hours (e.g. when packages like {duckdb} or {Rfast} are involved). To my knowledge (spanning
mostly from community discussions), CRAN does not seem to have plans building binary packages
for Linux, at least in the forseeable future. The motivation to do so may have diminished even
further, particularly after Posit launched its public Package Manager service in 2020, offering Linux
binaries for various distributions on the x86_64 architecture.

Public Posit Package Manager
The PPM has been a valuable resource for the R community since its launch. However, it has the
following drawbacks:

• The build process is untransparent / not public
• The download speed is at best “acceptable”
• The usage of the binaries comes with a TOS agreement. This can be problematic for specific

use cases and poses a general risk to users, as it is often overlooked and might cause (costly)
architecture adjustments once it is realized

• Binaries for the arm64 architecture are missing

Alpine Linux
Alpine Linux binaries are currently not available at all. Despite this, Alpine has become the de facto
standard for CI/CD builds—both containerized and non-containerized—largely due to its minimal
OS footprint and lightweight system libraries.

Unlike most mainstream distributions, Alpine uses the MUSL C library instead of the more
common GLIBC. This difference can cause compatibility issues for packages that interface with C
code, requiring additional adjustments from package authors. However, unless specifically targeting
Alpine, most developers don’t make these adaptations—partly because CRAN does not run MUSL-
based checks as part of its submission process.

In a recent exchange with the CRAN team (January 2025), they confirmed that introducing such
checks is not currently a priority. As a result, the absence of Alpine-compatible R package binaries
continues to limit R’s integration in modern CI/CD pipelines, leaving it at a disadvantage compared
to other languages.

Architecture: arm64
Here’s a refined and subtly rephrased version of your paragraph:

Much like the situation with Alpine Linux, R package binaries for the arm64 architecture are
currently unavailable. Even Posit has yet to make progress on this front, despite indicating in a
2024 correspondence that they intend to begin building for arm64 in 2025.

The arm64 architecture has gained significant traction in recent years, with strong support across
major cloud providers. These servers often deliver better cost-efficiency and, in many cases, superior
CPU performance compared to their x86 counterparts.

The absence of R package (and interpreter) binaries for arm64 limits R’s presence in this growing
ecosystem, effectively making it a second-class citizen in this space.

2

https://packagemanager.posit.co
https://www.alpinelinux.org/


R Universe
R Universe, an existing R-consortium funded project, is a first step to an alternative packaging
system for the R community.

However, as of today, R universe only builds binary packages for the latest LTS release of Ubuntu
(filtered on Linux in general). Packages for other architectures and distributions are missing.

In addition, the build process heavily relies on GitHub Actions. While this might seem a positive
aspect for some on the first look, I’d argue that it is effectively a downside for the following reasons:

• GitHub’s public runners are rather slow compared to evenly-sized cloud VMs
• GitHubs default free build minutes are quite limited and the costs for adding additonal ones

are quite high, compared with the alternative of providing private runners
• GitHub did not have arm64 support until recently, and the support for such is in an relatively

early stage with limited build capacities

I argue that most of the build process could be done more efficiently, both in terms of costs and
resource efficiency.

Another notable shortcoming is the opacity of the package build engine, along with its infras-
tructure and overall build process. While each package has a dedicated repository that runs builds
publicly via GitHub Actions, the underlying logic and workflows remain somewhat abstract and not
easily accessible.

This lack of transparency means users cannot readily reuse or adapt the build and publishing pro-
cess for their own purposes—they are instead fully dependent on the behind-the-scenes mechanisms
of R Universe.

Creating custom repositories
All of previously mentioned limitations pose significant challenges for teams looking to create and
maintain their own private repository with a curated set of (internal) R packages. Nowadays, some
tools exist that allow achieving this: {minicran} and drat. However, these do not provide the option
to (easily) build binary packages or manage the packages in S3 buckets.

Ideally, it should be as easy as running a single function (or two) which initializes the remote
storage, builds packages from a local source or remote URL and returns the final repository URL
for package downloads in the end.

The motivation for developing alternative solutions has grown over the past year, particularly
after Posit significantly increased the pricing of its Package Manager product. Previously, it offered
a reasonably priced and convenient way to manage internal R repositories. However, the recent
pricing shift has made the tool cost-prohibitive for many organizations, especially relative to its
feature set; prompting numerous teams to reevaluate their tooling choices.

The proposal
Establish a R-based, open-source build system for R package binaries. Not only the source code
of the underlying code engine should be public, but also the actual build processes (running in CI)
of the publicly running service building CRAN package binaries.

The build system should be able to build packages for (common) Linux distributions and multiple
architectures (for the start x86 and arm64, riscv64 in the forseeable future). As R is the best tool

3

https://github.com/andrie/miniCRAN
https://cran.r-project.org/web/packages/drat/index.html


for building its own packages, thanks to projects like {pak}, {cranlike}, {pkgdepends}, {cranberries}
and others, the core part will be done in R itself. This also allows for possible contributions from
the community itself, as the codebase should be familiar to them.

The engine should be written in a generic way, so that it can be used to build binaries from any
R package source, being it a local (on disk) or remote (URL) one. It should allow publishing to
custom repositories, so that the community has a “go-to” tool for building and creating their own
private repositories.

Users should optionally be allowed to store the build metadata in a database (SQLite, PG, Mari-
aDB), allowing for optional statistical analysis and other post-hoc analysis.

The main storage for the binaries itself is S3 (as the only option for now). S3 allows for flexible
data storage and replication while keeping costs small. Currently, no existing build tools allow using
S3 directly, i.e. binaries must be stored on hard disks. Doing so increases storage costs by many
factors and becomes a problem for medium-large sized repositories.

Storing packages in S3 allows for direct distribution of such to users. Yet often enough, the raw
S3 URLs are not pretty enough to use them in production environments. A simple CNAME entry
can often help to resolve this and allows for a simple, custom-domain access for users. Optionally,
S3 can serve as the source for a Content Delivery Network (CDN), which allows for accelerated
download speed.

As of today, the current system in place provides binaries for

• Ubuntu 24.04
• Ubuntu 22.04
• RHEL8
• RHEL9
• Alpine 3.20
• Alpine 3.21

for both x86_64 and arm64 architectures. The download speed is 5-10x faster than when down-
loading binaries from the Posit Package Manager. The build process is fully transparent (https:
//ci.devxy.io/repos/7).

Project plan
Start-up phase
The project is already up and running with respect to the core components and infrastructure.

Technical delivery
An up-and-running global package binary download service which processes daily incoming changes
of CRAN packages (additions / removals / updates).

For the core engine behind, continuous releases and improvements.

Other aspects
The project would profit from more public promotion and user testing/use.

Presentations at common R conferences are planned and are important for establishing the project
within the community.

4

https://ci.devxy.io/repos/7
https://ci.devxy.io/repos/7


Requirements
General

• Support for continuous development of the code engine
• Cost coverage for the public running service building CRAN packages for various distributions

and architectures

People
Additional people which ensure an upkeep of the public package build service and the underlying
servers.

The project can be run by a single person technically, more people would be helpful to improve
the project code and robustify the service maintenance.

Tools & Tech
• For the public CRAN build service, a cloud infrastructure (already existing) which provides

native x86_64 and arm64 runners that are able to natively build the respective packages. The
servers need decent CPU power to minimize build times and being able to process all existing
packages, in scenarios of major OS version updates, in a reasonable time.

• A (professionally) managed database storing the build metadata (already in place).

• S3 storage in the cloud (currently using Hetzner, 1TB/m = 5 EUR).

• UI frontend showing available packages (optional). Currently, a self-built Shiny App Dash-
board is in use (https://app.devxy.io/app/r-package-binaries-dashboard)

5

https://app.devxy.io/app/r-package-binaries-dashboard


CDN (optional)

UI (Shiny)

R 📦️ {bincraftR}...

Metadat...Inspect avail pkgs & metadata

Download Packages

R User

S3 buc...

Run via CI...

Cloud (or via minio)

Cloud or Local

Figure 1: High level architecture diagram

Funding
There are two main types of funding:

1. General maintenance and improvement of the “engine” and its related documentation
2. Coverage of cloud costs for the running service providing binaries for CRAN packages

For (1), I do not know if there are hard-coded policies in place for human workforce costs per
project/hour. It would surely be great to have financial support for this, but overall, (2) is more
important in my opinion.

For (2), I’ll outline a cloud cost overview which will be able to efficiently provide the technical
resources to run the overall CRAN build service for the forseeable future:

Name
~
Cost/month

~ Costs
/ year Notes

x86_64 Server (8 cores,
16 threads, 64 GB RAM)

54 Euro 648
Euro

Used to build x86_64 binaries, bare-metal
root server

x2 arm64 Server (16 cores,
32 GB RAM)

52 Euro 624
Euro

Used to build arm64 binaries, shared Cloud
Server, price for two units

Database Servers (HA) 12 Euro 144
Euro

HA Database for build metadata

S3 storage costs 15 Euro 180
Euro

Costs for 3 TB, current storage is at 2.14 TB

6



Name
~
Cost/month

~ Costs
/ year Notes

CDN costs ?? Euro ??
Euro

CDN bandwith/transfer costs. 10$/1 TB
bandwith, + local storage zones around the
world

A note on the arm64 servers: while the mentioned ones are (even only one of them) is sufficient
for processing the daily workloads, more power is needed for a full rebuild of new major OS versions.
Having a RX170 available, would make all of this a blast. (Similar conditions apply for the rebuilds
of x86 packages.) It is a question of money in the end, even though the costs are somewhat on
the smaller scale, given the many resources which can be processed with it, especially in relation to
other common cloud provider costs.

While the core setup costs (servers, S3, database) should stay quite static at ~ 150 / month (1800
/ year) (for the minimal setup), the bandwith costs for fast downloads around the world will be
dynamic. If the service is picked up by the community on a large scale, costs of multiple hundreds
per month could occur, when with a cost-efficient CDN provider. One way to limit this is by setting
global limits, though as a public service aiming to be the “go-to” destination for binaries, this would
be hard to communicate. In the end, substantial financial support from institutions support the R
ecosystem would be needed. (I’d argue personally that providing a professional and fast package
repository is a key interest of each language and every penny spent on it is well invested.)

All in all: cloud cost coverage between 2-3k per year, human work costs of ~15k for this grant
period to professionalize the core engine, extend documentation and establish the project. Seeing
this project getting funded would also allow for more concrete planning of onboarding additional
people, increasing the human bus-factor.

Summary
The project would greatly benefit from dedicated resources to support ongoing development of the
core engine, as well as to cover ongoing cloud infrastructure costs.

Additionally, increasing the number of individuals with access to the core components of the
system would improve resilience, reducing the risk of disruptions due to single points of failure or
individual unavailability.

Success
Definition of done

1. A running, public build service providing R package binaries for Linux to the community which
has caused minimal interruptions for users across a timespan covering multiple OS updates.

2. A framework/engine for building binary packages, written in R, with extensive documentation
around its usage and optional extensions (e.g. metadata database), allowing users to easily
host and use their own package repository.

Measuring success
• Download counts

7

https://www.hetzner.com/dedicated-rootserver/matrix-rx/


• Tracking missing/corrupted packages in the public service
• Gathering user feedback on the overall process of creating custom user repositories

Future work
Encouraging community contributions could play a key role in sustaining the project over the long
term. Ultimately, it would be fantastic to have an open, free, and professional-grade tool that
not only supports the creation and maintenance of custom user repositories, but also delivers a
high-performance binary package repository for CRAN packages out of the box.

Key risks
The project faces several potential risks:

• Gaining broad acceptance within the community and building trust in the service and its build
process

• Competition from established players in the space (e.g., Posit) offering proprietary alternatives
• Bus factor: ensuring that multiple individuals have access to all critical components of the

infrastructure to prevent reliance on a single person
• Uncertainty around long-term funding to cover operational costs—particularly bandwidth ex-

penses, which could become significant if community adoption grows substantially

8


	Signatories
	Project team
	Contributors

	The Problem
	Linux binary packages
	Public Posit Package Manager
	Alpine Linux
	Architecture: arm64
	R Universe
	Creating custom repositories

	The proposal
	Project plan
	Start-up phase
	Technical delivery
	Other aspects

	Requirements
	General
	People
	Tools & Tech
	Funding
	Summary

	Success
	Definition of done
	Measuring success
	Future work
	Key risks


